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Reminder: Graph generative models
! Random graph models


! Deep generative models 
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• Capture simple graph distribution


• Limited capacity to model complex 
dependencies 


• Only capable of modelling a few statistical 
properties of graphs

• Learn generative models 
directly from an observed set 
of graphs 


• Can model highly complex 
structures such as proteins 



What will you learn?
! Given the observation , with  , we aim at 

learning the distribution of the observed set of graphs  such 
that sampled graphs looks like the ones in the dataset

𝒟 = {Gi}i Gi ∼ Pdata
Pθ(G)
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A probabilistic perspective of generative models 

Diff

Main challenges for generating graphs 

Main families of graph generative models

Foundations of 
generative models


(last week)

Specific to graphs

(today)



Today’s lecture
! Introduction into deep probabilistic graph generative models


! Main architectures


! Applications


! Open discussion/ Feedback on the class
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Today’s lecture
! Introduction into deep probabilistic graph generative models


! Main architectures


! Applications


! Open discussion/ Feedback on the class
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What’s New with Graphs?
! Non-Unique Representations:  A graph with  nodes can be 

represented by up to  equivalent adjacency matrices
n

n!

Can we use generative models for Euclidean data? 
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! Non-Unique Representations:  A graph with  nodes can be 
represented by up to  equivalent adjacency matrices


• Existing methods cannot naturally generalize to graphs of varying 
size 

- training on all possible node permutations or specifying a canonical permutation 

is required, both of which require   time

n
n!

𝒪(n!)

Non-Unique Representation

22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

G → A → vec(A) ⟶ Off-the-shelf generative model
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Varying Size Input
! Rather than vectoring the adjacency matrix: 

- Learn graph embeddings as compact representations

- Use these embeddings as input of classical generative models


! Key limitations:

- Still constrained to a single input graphs and a fixed number of nodes

22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

⟶ ⟶x ∈ ℝd
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Off-the-shelf generative model



Topological Information

!  and  are the node features matrix and the edge 
attributes tensor, respectively


- Information relies on both data features and topology

- Complex Dependencies: Edges and nodes cannot be treated independently


- Large Output Spaces: To generate a graph with  nodes the generative model may have to 
output   values to specify its structure 


- Discrete Objects by Nature:  Not differentiable

X ∈ ℝN×D E ∈ ℝN×N×F

n
𝒪(n2)
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22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

⟶ generative 
model

G = (𝒱, ℰ, X, E)



Topological Information

!  and  are the node features matrix and the edge 
attributes tensor, respectively


- Information relies on both data features and topology

- Complex Dependencies: Edges and nodes cannot be treated independently


- Large Output Spaces: To generate a graph with  nodes the generative model may have to 
output   values to specify its structure 


- Discrete Objects by Nature:  Not differentiable

X ∈ ℝN×D E ∈ ℝN×N×F

n
𝒪(n2)
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22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

⟶ generative 
model

G = (𝒱, ℰ, X, E) • Should we learn joint distribution of G? 


• Should we rather learn the joint 
distribution of X and E independently?


• Should we treat them as categorical or 
continuous data?



Evaluating Similarity
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22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

⟶   generative 
model ⟶

ℒ

Loss function needs to be permutation equivariant!

! Exposing the model to  permutations is infeasible

! Pre-defining an order is computationally expensive

- Only practical in constrained domains (e.g., molecules via SMILES)

n!



Graph Generative Models 

! Given the observation , with  , we aim at 

- learning the distribution of the observed set of graphs  such that sampled graphs 

looks like the ones in the dataset [unconditional generation]


- learning the distribution of the observed set of graphs  such that sampled graphs 
looks like the ones in the dataset and conditioned to some prior information     [conditional 
generation]

𝒟 = {Gi}i Gi ∼ pdata
pθ(G)

Pθ(G |y)

11

Network Machine Learning - EE452

Dr Dorina Thanou 


Prof. Pascal Frossard

22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

Gi ∼ pdata

ℳ
pdata

pθ

d(pdata, pθ)

22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

22 Vignac, Osman et al.

Fig. 6: Non-curated samples on GEOM-drugs with implicit hydrogens.

Fig. 7: Non-curated samples on QEOM-drugs with explicit hydrogens.

𝒟 = {G1, G2, …, Gn}
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A unifying view of graph generation
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An overview of deep graph generation approaches 5

Zhu et al., (2022)
[Zhou22]



How to Decode/Generate Graphs? 
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One Shot Generation: Sequential Generation

Graph Generator

builds a probabilistic graph 
model based on the matrix 
representation that 
generates all nodes and 
edges in one shot

builds the nodes and edges 
in a sequential way, one 
after another



One shot generation
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categorical distributions of types. To generate the final
graph, it is required to obtain the discrete-valued objects Ap

and Fp from ~Ap and ~Fp, respectively. The existing works
have two ways to realize this step detailed as follows.

In the first way, the existing works [21], [54], [55] use sig-
moid activation function to compute Ap and Fp during the
training time. At test time, the discrete-valued estimate Ap

and Fp can be obtained by taking edge- and node-wise arg-
max in ~Ap and ~Fp. Alternatively, existing works [22], [56],
[57] leverage categorical reparameterization with the Gum-
bel-Softmax [80], [81], which is to sample from a categorical
distribution during the forward pass (i.e., Fp

i ! Catð ~Fp
i Þ

and Ap
ij ¼ Catð ~Ap

ijÞÞ and the original continuous-valued ~Ap

and ~Fp in the backward pass. In this way, these methods
can perform continuous-valued operations during the train-
ing procedure and do the categorical sampling procedure to
finally generate F and A.

Message-Passing-Based Methods. Message-passing-based
methods generate graphs by iteratively refining the graph
topology and node representations of the initialized graph
through the MPNN. Specifically, based on the latent repre-
sentation z sampled from a simple distribution (e.g., Gauss-
ian), we usually first generate an initialized adjacent matrix
A0 and the initialized node latent representations H0 2
RN%L, where L refers to the length of each node representa-
tion (here we omit the node ordering symbol p for clarity).
Then A0 and H0 are updated though MPNN into A1 and
H1, which are the adjacent matrix and hidden states in the
first intermediate layer, then another MPNN layer is
applied to generate for the 2nd layer, etc. We can stack mul-
tiple such layers to explicitly characterize the higher-order
correlation among nodes and edges. Each MPNN layer can
be expressed as follows:

Alþ1
i;j ¼ Al

i;j þReLuðn1Al
i;j þ n2h

l
i þ n3h

l
jÞ;

hlþ1
i ¼ hl

i þReLuðw1 hl
i þ

XN

j
hi;jw2 hl

jÞ; (14)

where v1, v2, v3, w1 and w2 are trainable parameters. We can
stack multiple such layers to explicitly characterize the
higher-order correlation among nodes and edges, which is
also illustrated in Fig. 3c. Finally, after T layers’ updating,
the outputs AT

i;j and FT
i are used to parameterize the cate-

gorical distributions of each edge and node, based on which

each edge Ai;j and node Fi are generated through categori-
cal sampling introduced above. To learn the above genera-
tor, Existing methods leverage various learning frameworks
such as VAE and GANs [58], [59], [60], or have a plain
framework based on the score-based generation [61].

Invertible-Transform-Based Methods. Flow-based genera-
tive methods can also do one-shot generation, by a unique
invertible function between graph G and the latent prior z
sampling from a simple distribution (e.g., Gaussian), as
shown in Fig. 3b. Concretely, based on vanilla flow-based
learning techniques introduced in Appendix. Special for-
ward transformation G!z and backward transformation
z!G needs to be designed.

Madhawa et al. [63] propose the first flow-based one-
shot graph generation model called GraphNVP. To get z ¼
ðzF ; zAÞ from G ¼ ðA;F Þ in the forward transformation, they
first convert the discrete variable A and F into continuous
variable A0 and F 0 by adding real-valued noise), which is
known as dequantization. Then two types of reversible affine
coupling layers: adjacency coupling layers and node attri-
bute coupling layers are utilized to transform the adjacency
matrix A0 and the node attribute matrix F 0 into latent repre-
sentations zA and zF , respectively. The lth reversible cou-
pling layers are designed as follows:

zlF ½i( ¼ zl)1
F ½i( * expðsF ðzl)1

F ½i(; AÞÞ þ tF ðzl)1
F ½i(; AÞ (15)

zlA½i; j( ¼ zl)1
A ½i; j( * expðsAðzl)1

A ½i; j(ÞÞ þ tAðzl)1
A ½i; j(Þ; (16)

where z0F ¼ X0 and z0A ¼ A0. zlF ½i( refers to the ith entry of zlF ;
* denotes element-wise multiplication. Functions sAð+Þ and
tAð+Þ stand for scale and translation operations which can be
implemented based on MPNN, and sF ð+Þ, tF ð+Þ can be
implemented based on MLP networks. To get G ¼ ðF;AÞ
from z ¼ ðzF ; zAÞ in the backward transformation, the reversed
operation is conducted based on the above forward trans-
formation operation in Eqs. (15) and (16). Next a probabilis-
tic feature matrix ~F is generated given the sampled zF and
the generated adjacency matrix A through a sequence of
inverted node attribute coupling layers. Likewise, the node-
wise argmax of ~F is used to get discrete feature matrix F .

Transposed-Convolution-Based Methods. One typical type of
graph decoder in the one-shot-generation techniques is con-
structed based on the transposed convolution neural net-
works [26]. The process is about generating the adjacent
matrix of graph by taking the node latent representation vec-
tors as input. The transposed-convolution-based decoder con-
sists of a node transposed convolution layer and several edge
transposed convolution layers.

The node transposed convolution layer is used to decode
the edge representations of the graph based on the node
embedding. For example, after a node transposed convolu-
tion layer, the edge representations Ei;j between node vi
and node vj can be computed as

Ei;j ¼
XL

m¼1
ðsðHm

i !mjÞ þ sðHm
j !niÞÞ; (17)

where sðHm
i !mjÞ means the transposed convolution contri-

bution of node vi to its potential edge Ei;j, which is made by
the mth entry of its node representations, and !mj represents
one entry of the transposed convolution filter vector !m 2

Fig. 3. Schema for adjacent-matrix-based one-shot generation.
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Edge based


It requires a generative 
model that predicts 
edges independently 


One Shot Generation

Graph Generator

Matrix based



Sequential generation
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Sequential Generation

Graph Generator

Motif  
sequence

Edge / node 
sequence

Rule  
sequence

applications, where a graph is constructed based on a pre-
defined sequence of rules by incorporating appropriate
domain expertise. A more detailed description of methods
in each category is provided below.

2.1.1 Node-Sequence-Based

General Framework. Node-sequence-based methods essen-
tially generate the graph by generating one node and its
associated edges in each step, as shown in Fig. 2a. The graph
is modeled by a sequence based on a predefined ordering p
on the nodes. Each unit si in the sequence of components S
is represented as a tuple si ¼ ðvpi ; fei;jgj< iÞ (as shown at the
bottom of Fig. 2a), indicating that at each high-level step,
the generator generates one node vpi and all its associated
edges set fei;jgj< i.

1 Specifically, in node-sequence-based
generation, generating a unit si involves two main steps. In
the first step, a node is generated conditioning on the cur-
rent generated graph Gi, which can be interpreted to learn
pðvpi jGiÞ. The second step is to generate the associated edges
set fei;jgj< i for node v

p
i .

There are two options when it comes to generating the
associated edges of each node: 1) collective associated-edge
generation, where the predictions are conducted on all of
the node pairs between vpi and the other existing nodes in
Gi in a single shot to directly generate the associated edges
set fei;jgj< i; and 2) progressive-associated-edge generation,
which generates the associated edges of node vpi in
sequence, with two actions per step: addEdge, which deter-
mines the size of fei;jgj< i, and selectNode, which determines
to which node the node vpi will be connected if addEdge is
needed.

Collective Associated-Edge Generation. To conduct the pre-
dictions on node pairs between the newly generated node vpi
and all the other existing nodes, most of the works [18], [19],
[39], [40], [41], [42], [70] resort to predicting the adjacent vec-
tor Ap

i;$, which covers all the potential edges from the newly
added node vi to the other existing nodes. Thus, we can fur-
ther represent each unit as si ¼ ðvpi ; Ap

i;$Þ. And the sequence

can be represented as SeqðG;pÞ ¼ fðvp1 ; Ap
1;$Þ; . . .; ðvpN;Ap

N;$Þg.
The aim is to learn the distribution as

pðVp; ApÞ ¼
YN

i¼1
pðvpi jv

p
<i; A

p
<i;$ÞpðA

p
i;$jv

p
%i; A

p
<i;$Þ; (1)

where vp<i refers to the nodes generated before vpi and Ap
< i;$

refers to the adjacent vectors generated before Ap
i;$. Such

joint probability can be implemented by sequential-based
architectures such as generative RNN models [18], [19],
[27], [41] and auto-regressive flow-based learning mod-
els [70]. Here we introduce the RNN-based models as an
example.

Fig. 2. Four categories in graph sequential generating: the upper line of
each sub-figure refers to the immediate graph that are generated per
step; the bottom line of each sub-figure refers to the sequence consisting
of unit Si that is generated per step.

TABLE 1
Deep Generative-Based Methods for Unconditional Graph Generation

Generating Style Techniques Reference

Sequential Generating

Node-sequence-based Collective-associated-edge-generation [18], [19], [39], [40], [41], [42], [43]
Progressive-associated-edge-generation [44], [45], [46], [47]

Edge-sequence-based Independency-based [48]
Dependency-based [20], [49]

Motif-sequence-based Domain-agnostic-based [50]
Domain-specific-based [28], [51], [52]

Rule-sequence-based [10], [53]

One-shot Generating

Adjacency-matrix-based MLP-based [21], [22], [54], [55], [56], [57]
Message-Passing-based [58], [59], [60], [61]
Invertible-transform-based [62], [63]
Transposed-convolution-based [26], [64]

Edge-list-based Random-walk-based [65], [66], [67], [68]
Node-similarity-based [2], [69], [70], [71], [72], [73]

1. Here we omit the node and edge attribute symbol for clarity, but
it is important to bear in mind that the generated node and edges can
all have attributes (i.e., type, label).
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Today’s lecture
! Introduction into deep probabilistic graph generative models


! Main architectures


! Applications


! Open discussion/ Feedback on the class
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Graph VAE
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! Circumvent non-differentiability problem through loss on 
constructed probabilistic graph 


! Variational Autoencoder: 
- Encoder : embeds graph 𝐺 = (𝐴, 𝐸, 𝐹) into continuous latent 

space 𝑧 

- Decoder: reconstructs from 𝑧 a probabilistic graph  of predefined max 
size 

qθ(z |G)

Ĝ

VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)
• Input: graph 𝐺𝐺 = (𝐴𝐴,𝐸𝐸,𝐹𝐹)
• 𝐴𝐴: adjacency matrix, 𝐸𝐸: edge attribute tensor, 𝐹𝐹: node attribute matrix

align the generated graph to 
the ground truth (non-unique 
representations challenge) 

control over the properties of generated 
graphs [conditioning]


GNN + gated pooling
 [Simonovsky’18]



Limitations of graph VAEs
! Desirable: Different node orderings of the same graph should be 

mapped to the same latent space 


! This implies solving graph isomorphism (NP-hard)


- VAEs are only feasible in constrained domains (e.g. molecules)

- Typically small graphs with ~40 nodes


! The max size of the graphs must be predefined


! Graph matching is required 
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GANs: MolGAN
! An implicit, likelihood-free generative model

! Directly generates graphs via learned node and edge likelihoods


! Reward discriminator evaluates graph properties

! Combined with reinforcement learning (loss function)

- Encourages generation of molecules with desirable properties


! Permutation equivariance is achieved using graph convolution in the 
discriminator 
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MolGAN: An implicit generative model for small molecular graphs

Nicola De Cao
1

Thomas Kipf
1

Abstract

Deep generative models for graph-structured data
offer a new angle on the problem of chemical
synthesis: by optimizing differentiable models
that directly generate molecular graphs, it is pos-
sible to side-step expensive search procedures in
the discrete and vast space of chemical structures.
We introduce MolGAN, an implicit, likelihood-
free generative model for small molecular graphs
that circumvents the need for expensive graph
matching procedures or node ordering heuris-
tics of previous likelihood-based methods. Our
method adapts generative adversarial networks
(GANs) to operate directly on graph-structured
data. We combine our approach with a reinforce-
ment learning objective to encourage the genera-
tion of molecules with specific desired chemical
properties. In experiments on the QM9 chemi-
cal database, we demonstrate that our model is
capable of generating close to 100% valid com-
pounds. MolGAN compares favorably both to
recent proposals that use string-based (SMILES)
representations of molecules and to a likelihood-
based method that directly generates graphs, al-
beit being susceptible to mode collapse.

1. Introduction

Finding new chemical compounds with desired properties
is a challenging task with important applications such as
de novo drug design (Schneider & Fechner, 2005). The
space of synthesizable molecules is vast and search in this
space proves to be very difficult, mostly owing to its discrete
nature.

Recent progress in the development of deep generative mod-
els has spawned a range of promising proposals to address
this issue. Most works in this area (Gómez-Bombarelli

1Informatics Institute, University of Amsterdam, Amster-
dam, The Netherlands. Correspondence to: Nicola De Cao
<nicola.decao@gmail.com>.

Presented at the ICML 2018 workshop on Theoretical Foundations

and Applications of Deep Generative Models, Stockholm, Sweden,
PMLR 80, 2018. Copyright 2018 by the author(s).

Molecular graph
Generator Discriminator

Reward 
network

z ~ p(z)

0/1

0/1

x ~ pdata(x)

Figure 1. Schema of MolGAN. A vector z is sampled from a prior
and passed to the generator which outputs the graph representation
of a molecule. The discriminator classifies whether the molecular
graph comes from the generator or the dataset. The reward net-
work tries to estimate the reward for the chemical properties of a
particular molecule provided by an external software.

et al., 2016; Kusner et al., 2017; Guimaraes et al., 2017;
Dai et al., 2018) make use of a so-called SMILES repre-
sentation (Weininger, 1988) of molecules: a string-based
representation derived from molecular graphs. Recurrent
neural networks (RNNs) are ideal candidates for these rep-
resentations and consequently, most recent works follow the
recipe of applying RNN-based generative models on this
type of encoding. String-based representations of molecules,
however, have certain disadvantages: RNNs have to spend
capacity on learning both the syntactic rules and the order
ambiguity of the representation. Besides, this is approach
not applicable to generic (non-molecular) graphs.

SMILES strings are generated from a graph-based represen-
tation of molecules, thereby working in the original graph
space has the benefit of removing additional overhead. With
recent progress in the area of deep learning on graphs (Bron-
stein et al., 2017; Hamilton et al., 2017), training deep gen-
erative models directly on graph representations becomes
a feasible alternative that has been explored in a range of
recent works (Kipf & Welling, 2016; Johnson, 2017; Grover
et al., 2019; Li et al., 2018b; Simonovsky & Komodakis,
2018; You et al., 2018).

Likelihood-based methods for molecular graph generation
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Figure 2. Outline of MolGAN. From left: the generator takes a sample from a prior distribution and generates a dense adjacency tensor
A and an annotation matrix X . Subsequently, sparse and discrete Ã and X̃ are obtained from A and X respectively via categorical
sampling. The combination of Ã and X̃ represents an annotated molecular graph which corresponds to a specific chemical compound.
Finally, the graph is processed by both the discriminator and reward networks that are invariant to node order permutations and based on
Relational-GCN (Schlichtkrull et al., 2017) layers.

loss and the RL loss:

L(✓) = � · LWGAN (✓) + (1� �) · LRL(✓) , (4)

where � 2 [0, 1] is a hyperparameter that regulates the trade-
off between the two components.

3.1. Generator

G�(z) takes D-dimensional vectors z 2 RD sampled from
a standard normal distribution z ⇠ N (0, I) and outputs
graphs. While recent works have shown that it is feasible
to generate graphs of small size by using an RNN-based
generative model (Johnson, 2017; You et al., 2018; Li et al.,
2018a;b) we, for simplicity, utilize a generative model that
predicts the entire graph at once using a simple multi-layer
perceptron (MLP), as similarly done in Simonovsky & Ko-
modakis (2018). While this limits our study to graphs of
a pre-chosen maximum size, we find that it is significantly
faster and easier to optimize.

We restrict the domain to graphs of a limited number of
nodes and, for each z, G✓ outputs two continuous and dense
objects: X 2 RN⇥T that defines atom types and AN⇥N⇥Y

that defines bonds types (see Section 2.1). Both X and
A have a probabilistic interpretation since each node and
edge type is represented with probabilities of categorical
distributions over types. To generate a molecule we obtain
discrete, sparse objects X̃ and Ã via categorical sampling
from X and A, respectively. We overload notation and also
represent samples from the dataset with binary X̃ and Ã.

As this discretization process is non-differentiable, we ex-
plore three model variations to allow for gradient-based
training: We can i) use the continuous objects X and
A directly during the forward pass (i.e., X̃ = X and
Ã = A), ii) add Gumbel noise to X and A before

passing them to D� and R̂ in order to make the gen-
eration stochastic while still forwarding continuous ob-
jects (i.e., X̃ij = Xij + Gumbel(µ = 0,� = 1) and
Ã = Aijy +Gumbel(µ = 0,� = 1)), or iii) use a straight-
through gradient based on categorical reparameterization
with the Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017), that is we use a sample form a categorical
distribution during the forward pass (i.e., X̃i = Cat(Xi)
and Ãij = Cat(Aij)) and the continuous relaxed values
(i.e., the original X and A) in the backward pass.

3.2. Discriminator and reward network

Both the discriminator D� and the reward network R̂ re-
ceive a graph as input, and they output a scalar value each.
We choose the same architecture for both networks but do
not share parameters between them. A series of graph con-
volution layers convolve node signals X̃ using the graph
adjacency tensor Ã. We base our model on Relational-GCN
(Schlichtkrull et al., 2017), a convolutional network for
graphs with support for multiple edge types. At every layer,
feature representations of nodes are convolved/propagated
according to:

h0(`+1)
i = f (`)

s (h(`)
i ,xi) +

NX

j=1

YX

y=1

Ãijy

|Ni|
f (`)
y (h(`)

j ,xj) ,

h(`+1)
i = tanh(h0(`+1)

i ) , (5)

where h(`)
i is the signal of the node i at layer ` and f (`)

s is a
linear transformation function that acts as a self-connection
between layers. We further utilize an edge type-specific
affine function f (`)

y for each layer. Ni denotes the set of
neighbors for node i. The normalization factor 1/|Ni| en-
sures that activations are on a similar scale irrespective of
the number of neighbors.

[MolGAN, De Cao et al. 2018]
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Ã
<latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit><latexit sha1_base64="IVJAEzjPjiXPvp4Oo4QNTUc/Kds=">AAAB+3icbVDLSsNAFL2pr1pftS7dDBbBVUlEqMuKG5cV7AOaUCaTSTt0MgkzE7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmtG1/W5WNza3tnepubW//4PCoftzoqziVhPZIzGM59LGinAna00xzOkwkxZHP6cCf3Rb+4JFKxWLxoOcJ9SI8ESxkBGsjjesNN8J66oeZqxkPaHaT5+N6027ZC6B14pSkCSW64/qXG8QkjajQhGOlRo6daC/DUjPCaV5zU0UTTGZ4QkeGChxR5WWL7Dk6N0qAwliaJzRaqL83MhwpNY98M1kkVateIf7njVIdXnsZE0mqqSDLQ2HKkY5RUQQKmKRE87khmEhmsiIyxRITbeqqmRKc1S+vk/5ly7Fbzv1Vs9Mu66jCKZzBBTjQhg7cQRd6QOAJnuEV3qzcerHerY/laMUqd07gD6zPH5mUlME=</latexit>

Figure 2. Outline of MolGAN. From left: the generator takes a sample from a prior distribution and generates a dense adjacency tensor
A and an annotation matrix X . Subsequently, sparse and discrete Ã and X̃ are obtained from A and X respectively via categorical
sampling. The combination of Ã and X̃ represents an annotated molecular graph which corresponds to a specific chemical compound.
Finally, the graph is processed by both the discriminator and reward networks that are invariant to node order permutations and based on
Relational-GCN (Schlichtkrull et al., 2017) layers.

loss and the RL loss:

L(✓) = � · LWGAN (✓) + (1� �) · LRL(✓) , (4)

where � 2 [0, 1] is a hyperparameter that regulates the trade-
off between the two components.

3.1. Generator

G�(z) takes D-dimensional vectors z 2 RD sampled from
a standard normal distribution z ⇠ N (0, I) and outputs
graphs. While recent works have shown that it is feasible
to generate graphs of small size by using an RNN-based
generative model (Johnson, 2017; You et al., 2018; Li et al.,
2018a;b) we, for simplicity, utilize a generative model that
predicts the entire graph at once using a simple multi-layer
perceptron (MLP), as similarly done in Simonovsky & Ko-
modakis (2018). While this limits our study to graphs of
a pre-chosen maximum size, we find that it is significantly
faster and easier to optimize.

We restrict the domain to graphs of a limited number of
nodes and, for each z, G✓ outputs two continuous and dense
objects: X 2 RN⇥T that defines atom types and AN⇥N⇥Y

that defines bonds types (see Section 2.1). Both X and
A have a probabilistic interpretation since each node and
edge type is represented with probabilities of categorical
distributions over types. To generate a molecule we obtain
discrete, sparse objects X̃ and Ã via categorical sampling
from X and A, respectively. We overload notation and also
represent samples from the dataset with binary X̃ and Ã.

As this discretization process is non-differentiable, we ex-
plore three model variations to allow for gradient-based
training: We can i) use the continuous objects X and
A directly during the forward pass (i.e., X̃ = X and
Ã = A), ii) add Gumbel noise to X and A before

passing them to D� and R̂ in order to make the gen-
eration stochastic while still forwarding continuous ob-
jects (i.e., X̃ij = Xij + Gumbel(µ = 0,� = 1) and
Ã = Aijy +Gumbel(µ = 0,� = 1)), or iii) use a straight-
through gradient based on categorical reparameterization
with the Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017), that is we use a sample form a categorical
distribution during the forward pass (i.e., X̃i = Cat(Xi)
and Ãij = Cat(Aij)) and the continuous relaxed values
(i.e., the original X and A) in the backward pass.

3.2. Discriminator and reward network

Both the discriminator D� and the reward network R̂ re-
ceive a graph as input, and they output a scalar value each.
We choose the same architecture for both networks but do
not share parameters between them. A series of graph con-
volution layers convolve node signals X̃ using the graph
adjacency tensor Ã. We base our model on Relational-GCN
(Schlichtkrull et al., 2017), a convolutional network for
graphs with support for multiple edge types. At every layer,
feature representations of nodes are convolved/propagated
according to:

h0(`+1)
i = f (`)

s (h(`)
i ,xi) +

NX

j=1

YX

y=1

Ãijy

|Ni|
f (`)
y (h(`)

j ,xj) ,

h(`+1)
i = tanh(h0(`+1)

i ) , (5)

where h(`)
i is the signal of the node i at layer ` and f (`)

s is a
linear transformation function that acts as a self-connection
between layers. We further utilize an edge type-specific
affine function f (`)

y for each layer. Ni denotes the set of
neighbors for node i. The normalization factor 1/|Ni| en-
sures that activations are on a similar scale irrespective of
the number of neighbors.

One shot generation


• faster and easier to 
optimize than sequential 
generation


• Limited to graphs of a pre-
chosen maximum size

[MolGAN, De Cao et al. 2018]
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Figure 2. Outline of MolGAN. From left: the generator takes a sample from a prior distribution and generates a dense adjacency tensor
A and an annotation matrix X . Subsequently, sparse and discrete Ã and X̃ are obtained from A and X respectively via categorical
sampling. The combination of Ã and X̃ represents an annotated molecular graph which corresponds to a specific chemical compound.
Finally, the graph is processed by both the discriminator and reward networks that are invariant to node order permutations and based on
Relational-GCN (Schlichtkrull et al., 2017) layers.

loss and the RL loss:

L(✓) = � · LWGAN (✓) + (1� �) · LRL(✓) , (4)

where � 2 [0, 1] is a hyperparameter that regulates the trade-
off between the two components.

3.1. Generator

G�(z) takes D-dimensional vectors z 2 RD sampled from
a standard normal distribution z ⇠ N (0, I) and outputs
graphs. While recent works have shown that it is feasible
to generate graphs of small size by using an RNN-based
generative model (Johnson, 2017; You et al., 2018; Li et al.,
2018a;b) we, for simplicity, utilize a generative model that
predicts the entire graph at once using a simple multi-layer
perceptron (MLP), as similarly done in Simonovsky & Ko-
modakis (2018). While this limits our study to graphs of
a pre-chosen maximum size, we find that it is significantly
faster and easier to optimize.

We restrict the domain to graphs of a limited number of
nodes and, for each z, G✓ outputs two continuous and dense
objects: X 2 RN⇥T that defines atom types and AN⇥N⇥Y

that defines bonds types (see Section 2.1). Both X and
A have a probabilistic interpretation since each node and
edge type is represented with probabilities of categorical
distributions over types. To generate a molecule we obtain
discrete, sparse objects X̃ and Ã via categorical sampling
from X and A, respectively. We overload notation and also
represent samples from the dataset with binary X̃ and Ã.

As this discretization process is non-differentiable, we ex-
plore three model variations to allow for gradient-based
training: We can i) use the continuous objects X and
A directly during the forward pass (i.e., X̃ = X and
Ã = A), ii) add Gumbel noise to X and A before

passing them to D� and R̂ in order to make the gen-
eration stochastic while still forwarding continuous ob-
jects (i.e., X̃ij = Xij + Gumbel(µ = 0,� = 1) and
Ã = Aijy +Gumbel(µ = 0,� = 1)), or iii) use a straight-
through gradient based on categorical reparameterization
with the Gumbel-Softmax (Jang et al., 2017; Maddison
et al., 2017), that is we use a sample form a categorical
distribution during the forward pass (i.e., X̃i = Cat(Xi)
and Ãij = Cat(Aij)) and the continuous relaxed values
(i.e., the original X and A) in the backward pass.

3.2. Discriminator and reward network

Both the discriminator D� and the reward network R̂ re-
ceive a graph as input, and they output a scalar value each.
We choose the same architecture for both networks but do
not share parameters between them. A series of graph con-
volution layers convolve node signals X̃ using the graph
adjacency tensor Ã. We base our model on Relational-GCN
(Schlichtkrull et al., 2017), a convolutional network for
graphs with support for multiple edge types. At every layer,
feature representations of nodes are convolved/propagated
according to:

h0(`+1)
i = f (`)

s (h(`)
i ,xi) +

NX

j=1

YX

y=1

Ãijy

|Ni|
f (`)
y (h(`)

j ,xj) ,

h(`+1)
i = tanh(h0(`+1)

i ) , (5)

where h(`)
i is the signal of the node i at layer ` and f (`)

s is a
linear transformation function that acts as a self-connection
between layers. We further utilize an edge type-specific
affine function f (`)

y for each layer. Ni denotes the set of
neighbors for node i. The normalization factor 1/|Ni| en-
sures that activations are on a similar scale irrespective of
the number of neighbors.

One shot generation


• faster and easier to 
optimize than sequential 
generation


• Limited to graphs of a pre-
chosen maximum size

Graph convolution 
layers convolve the 
node signals 
using the graph 
adjacency tensor 

[MolGAN, De Cao et al. 2018]



Practical considerations in graph GANs
✓ No graph matching is required

✓ Higher validity and novelty than VAEs


- Predefined max graph size is needed

- Few graph GAN models exist

- Mainly due to the complexity of designing effective generators


- Expressivity challenges:

- One-shot generators struggle to capture global graph properties

- Issues more pronounced in large graphs

- Results in training instability and non-convergence 
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Autoregressive models
! Sequential generation: Graph generation process decomposed 

into a sequence of node and edge formations, conditioned on the 
graph structure previously generated (AR)


! Example: GraphRNN accommodates variable-sized graphs
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AR based Graph Generative Model

GraphRNN, You et al. 2018
• Idea: Generating graphs via sequentially adding nodes and edges

Graph 𝐺𝐺 with node ordering 𝜋𝜋 can be uniquely mapped into a 
sequence of node and edge additions 𝑆𝑆𝜋𝜋

𝑆𝑆𝜋𝜋 = (S1𝜋𝜋, S2𝜋𝜋 , S3𝜋𝜋, S4𝜋𝜋, S5𝜋𝜋)

AR based Graph Generative Model

GraphRNN, You et al. 2018
• Idea: Generating graphs via sequentially adding nodes and edges

Graph 𝐺𝐺 with node ordering 𝜋𝜋 can be uniquely mapped into a 
sequence of node and edge additions 𝑆𝑆𝜋𝜋

𝑆𝑆𝜋𝜋 = (S1𝜋𝜋, S2𝜋𝜋 , S3𝜋𝜋, S4𝜋𝜋, S5𝜋𝜋)

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Note that elements in the set of adjacency matrices A⇧ =
{A

⇡
|⇡ 2 ⇧} all correspond to the same underlying graph.

The goal of learning generative models of graphs is to learn
a distribution pmodel(G) over graphs, based on a set of
observed graphs G = {G1, ..., Gs} sampled from data dis-
tribution p(G), where each graph Gi may have a different
number of nodes and edges. When representing G 2 G, we
further assume that we may observe any node ordering ⇡

with equal probability, i.e., p(⇡) = 1
n! , 8⇡ 2 ⇧. Thus, the

generative model needs to be capable of generating graphs
where each graph could have exponentially many represen-
tations, which is distinct from previous generative models
for images, text, and time series.

Finally, note that traditional graph generative models (sur-
veyed in the introduction) usually assume a single input
training graph. Our approach is more general and can be
applied to a single as well as multiple input training graphs.

2.2. A Brief Survey of Possible Approaches

We start by surveying some general alternative approaches
for modeling p(G), in order to highlight the limitations of
existing non-autoregressive approaches and motivate our
proposed autoregressive architecture.

Vector-representation based models. One naı̈ve approach
would be to represent G by flattening A

⇡ into a vector
in Rn2

, which is then used as input to any off-the-shelf
generative model, such as a VAE or GAN. However, this
approach suffers from serious drawbacks: it cannot naturally
generalize to graphs of varying size, and requires training
on all possible node permutations or specifying a canonical
permutation, both of which require O(n!) time in general.

Node-embedding based models. There have been recent
successes in encoding a graph’s structural properties into
node embeddings (Hamilton et al., 2017), and one approach
to graph generation could be to define a generative model
that decodes edge probabilities based on pairwise relation-
ships between learned node embeddings (as in Kipf &
Welling 2016). However, this approach is only well-defined
when given a fixed-set of nodes, limiting its utility for the
general graph generation problem, and approaches based on
this idea are limited to learning from a single input graph
(Kipf & Welling, 2016; Grover et al., 2017).

2.3. GraphRNN: Deep Generative Models for Graphs

The key idea of our approach is to represent graphs under
different node orderings as sequences, and then to build an
autoregressive generative model on these sequences. As we
will show, this approach does not suffer from the drawbacks
common to other general approaches (c.f., Section 2.2), al-
lowing us to model graphs of varying size with complex

Figure 1. GraphRNN at inference time. Green arrows denote the
graph-level RNN that encodes the “graph state” vector hi in its
hidden state, updated by the predicted adjacency vector S⇡

i for
node ⇡(vi). Blue arrows represent the edge-level RNN, whose
hidden state is initialized by the graph-level RNN, that is used to
predict the adjacency vector S⇡

i for node ⇡(vi).

edge dependencies, and we introduce a BFS node order-
ing scheme to drastically reduce the complexity of learn-
ing over all possible node sequences (Section 2.3.4). In
this autoregressive framework, the model complexity is
greatly reduced by weight sharing with recurrent neural
networks (RNNs). Figure 1 illustrates our GraphRNN ap-
proach, where the main idea is that we decompose graph
generation into a process that generates a sequence of nodes
(via a graph-level RNN), and another process that then gen-
erates a sequence of edges for each newly added node (via
an edge-level RNN).

2.3.1. MODELING GRAPHS AS SEQUENCES

We first define a mapping fS from graphs to sequences,
where for a graph G ⇠ p(G) with n nodes under node
ordering ⇡, we have

S
⇡ = fS(G,⇡) = (S⇡

1 , ..., S
⇡
n), (1)

where each element S⇡
i 2 {0, 1}i�1

, i 2 {1, ..., n} is an
adjacency vector representing the edges between node ⇡(vi)
and the previous nodes ⇡(vj), j 2 {1, ..., i� 1} already in
the graph:3

S
⇡
i = (A⇡

1,i, ..., A
⇡
i�1,i)

T
, 8i 2 {2, ..., n}. (2)

For undirected graphs, S⇡ determines a unique graph G,
and we write the mapping as fG(·) where fG(S⇡) = G.

Thus, instead of learning p(G), whose sample space cannot
be easily characterized, we sample the auxiliary ⇡ to get the
observations of S⇡ and learn p(S⇡), which can be modeled
autoregressively due to the sequential nature of S⇡ . At infer-
ence time, we can sample G without explicitly computing
p(G) by sampling S

⇡ , which maps to G via fG.

Given the above definitions, we can write p(G) as the
marginal distribution of the joint distribution p(G,S

⇡):

p(G) =
X

S⇡

p(S⇡) 1[fG(S
⇡) = G], (3)

3We prohibit self-loops and S⇡
1 is defined as an empty vector.

! Instead of learning (and sampling from) , it learns , 
modelled auto-regressively

pdata(G) p(Sπ)
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Note that elements in the set of adjacency matrices A⇧ =
{A

⇡
|⇡ 2 ⇧} all correspond to the same underlying graph.

The goal of learning generative models of graphs is to learn
a distribution pmodel(G) over graphs, based on a set of
observed graphs G = {G1, ..., Gs} sampled from data dis-
tribution p(G), where each graph Gi may have a different
number of nodes and edges. When representing G 2 G, we
further assume that we may observe any node ordering ⇡

with equal probability, i.e., p(⇡) = 1
n! , 8⇡ 2 ⇧. Thus, the

generative model needs to be capable of generating graphs
where each graph could have exponentially many represen-
tations, which is distinct from previous generative models
for images, text, and time series.

Finally, note that traditional graph generative models (sur-
veyed in the introduction) usually assume a single input
training graph. Our approach is more general and can be
applied to a single as well as multiple input training graphs.

2.2. A Brief Survey of Possible Approaches

We start by surveying some general alternative approaches
for modeling p(G), in order to highlight the limitations of
existing non-autoregressive approaches and motivate our
proposed autoregressive architecture.

Vector-representation based models. One naı̈ve approach
would be to represent G by flattening A

⇡ into a vector
in Rn2

, which is then used as input to any off-the-shelf
generative model, such as a VAE or GAN. However, this
approach suffers from serious drawbacks: it cannot naturally
generalize to graphs of varying size, and requires training
on all possible node permutations or specifying a canonical
permutation, both of which require O(n!) time in general.

Node-embedding based models. There have been recent
successes in encoding a graph’s structural properties into
node embeddings (Hamilton et al., 2017), and one approach
to graph generation could be to define a generative model
that decodes edge probabilities based on pairwise relation-
ships between learned node embeddings (as in Kipf &
Welling 2016). However, this approach is only well-defined
when given a fixed-set of nodes, limiting its utility for the
general graph generation problem, and approaches based on
this idea are limited to learning from a single input graph
(Kipf & Welling, 2016; Grover et al., 2017).

2.3. GraphRNN: Deep Generative Models for Graphs

The key idea of our approach is to represent graphs under
different node orderings as sequences, and then to build an
autoregressive generative model on these sequences. As we
will show, this approach does not suffer from the drawbacks
common to other general approaches (c.f., Section 2.2), al-
lowing us to model graphs of varying size with complex

Figure 1. GraphRNN at inference time. Green arrows denote the
graph-level RNN that encodes the “graph state” vector hi in its
hidden state, updated by the predicted adjacency vector S⇡

i for
node ⇡(vi). Blue arrows represent the edge-level RNN, whose
hidden state is initialized by the graph-level RNN, that is used to
predict the adjacency vector S⇡

i for node ⇡(vi).

edge dependencies, and we introduce a BFS node order-
ing scheme to drastically reduce the complexity of learn-
ing over all possible node sequences (Section 2.3.4). In
this autoregressive framework, the model complexity is
greatly reduced by weight sharing with recurrent neural
networks (RNNs). Figure 1 illustrates our GraphRNN ap-
proach, where the main idea is that we decompose graph
generation into a process that generates a sequence of nodes
(via a graph-level RNN), and another process that then gen-
erates a sequence of edges for each newly added node (via
an edge-level RNN).

2.3.1. MODELING GRAPHS AS SEQUENCES

We first define a mapping fS from graphs to sequences,
where for a graph G ⇠ p(G) with n nodes under node
ordering ⇡, we have

S
⇡ = fS(G,⇡) = (S⇡

1 , ..., S
⇡
n), (1)

where each element S⇡
i 2 {0, 1}i�1

, i 2 {1, ..., n} is an
adjacency vector representing the edges between node ⇡(vi)
and the previous nodes ⇡(vj), j 2 {1, ..., i� 1} already in
the graph:3

S
⇡
i = (A⇡

1,i, ..., A
⇡
i�1,i)

T
, 8i 2 {2, ..., n}. (2)

For undirected graphs, S⇡ determines a unique graph G,
and we write the mapping as fG(·) where fG(S⇡) = G.

Thus, instead of learning p(G), whose sample space cannot
be easily characterized, we sample the auxiliary ⇡ to get the
observations of S⇡ and learn p(S⇡), which can be modeled
autoregressively due to the sequential nature of S⇡ . At infer-
ence time, we can sample G without explicitly computing
p(G) by sampling S

⇡ , which maps to G via fG.

Given the above definitions, we can write p(G) as the
marginal distribution of the joint distribution p(G,S

⇡):

p(G) =
X

S⇡

p(S⇡) 1[fG(S
⇡) = G], (3)

3We prohibit self-loops and S⇡
1 is defined as an empty vector.
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Algorithm 1 GraphRNN inference algorithm
Input: RNN-based transition module ftrans, output mod-
ule fout, probability distribution P✓i parameterized by ✓i,
start token SOS, end token EOS, empty graph state h

0

Output: Graph sequence S
⇡

S
⇡
1 = SOS, h1 = h

0, i = 1
repeat

i = i+ 1
hi = ftrans(hi�1, S

⇡
i�1) {update graph state}

✓i = fout(hi)
S
⇡
i ⇠ P✓i {sample node i’s edge connections}

until S⇡
i is EOS

Return S
⇡ = (S⇡

1 , ..., S
⇡
i )

where p(S⇡) is the distribution that we want to learn using
a generative model. Due to the sequential nature of S

⇡,
we further decompose p(S⇡) as the product of conditional
distributions over the elements:

p(S⇡) =
n+1Y

i=1

p(S⇡
i |S

⇡
1 , ..., S

⇡
i�1) (4)

where we set S⇡
n+1 as the end of sequence token EOS, to

represent sequences with variable lengths. We simplify
p(S⇡

i |S
⇡
1 , ..., S

⇡
i�1) as p(S⇡

i |S
⇡
<i) in further discussions.

2.3.2. THE GRAPHRNN FRAMEWORK

So far we have transformed the modeling of p(G) to model-
ing p(S⇡), which we further decomposed into the product of
conditional probabilities p(S⇡

i |S
⇡
<i). Note that p(S⇡

i |S
⇡
<i)

is highly complex as it has to capture how node ⇡(vi) links
to previous nodes based on how previous nodes are intercon-
nected among each other. Here we propose to parameterize
p(S⇡

i |S
⇡
<i) using expressive neural networks to model the

complex distribution. To achieve scalable modeling, we let
the neural networks share weights across all time steps i. In
particular, we use an RNN that consists of a state-transition

function and an output function:

hi = ftrans(hi�1, S
⇡
i�1), (5)

✓i = fout(hi), (6)

where hi 2 Rd is a vector that encodes the state of the
graph generated so far, S⇡

i�1 is the adjacency vector for
the most recently generated node i� 1, and ✓i specifies the
distribution of next node’s adjacency vector (i.e., S⇡

i ⇠ P✓i ).
In general, ftrans and fout can be arbitrary neural networks,
and P✓i can be an arbitrary distribution over binary vectors.
This general framework is summarized in Algorithm 1.

Note that the proposed problem formulation is fully gen-
eral; we discuss and present some specific variants with
implementation details in the next section. Note also that

RNNs require fixed-size input vectors, while we previously
defined S

⇡
i as having varying dimensions depending on i;

we describe an efficient and flexible scheme to address this
issue in Section 2.3.4.

2.3.3. GRAPHRNN VARIANTS

Different variants of the GraphRNN model correspond to
different assumptions about p(S⇡

i |S
⇡
<i). Recall that each

dimension of S⇡
i is a binary value that models existence

of an edge between the new node ⇡(vi) and a previous
node ⇡(vj), j 2 {1, ..., i� 1}. We propose two variants of
GraphRNN, both of which implement the transition func-
tion ftrans (i.e., the graph-level RNN) as a Gated Recurrent
Unit (GRU) (Chung et al., 2014) but differ in the implemen-
tation of fout (i.e., the edge-level model). Both variants are
trained using stochastic gradient descent with a maximum
likelihood loss over S⇡ — i.e., we optimize the parameters
of the neural networks to optimize

Q
pmodel(S⇡) over all

observed graph sequences.

Multivariate Bernoulli. First we present a simple base-
line variant of our GraphRNN approach, which we term
GraphRNN-S (“S” for “simplified”). In this variant, we
model p(S⇡

i |S
⇡
<i) as a multivariate Bernoulli distribution,

parameterized by the ✓i 2 Ri�1 vector that is output by
fout. In particular, we implement fout as single layer multi-
layer perceptron (MLP) with sigmoid activation function,
that shares weights across all time steps. The output of fout
is a vector ✓i, whose element ✓i[j] can be interpreted as a
probability of edge (i, j). We then sample edges in S

⇡
i inde-

pendently according to a multivariate Bernoulli distribution
parametrized by ✓i.

Dependent Bernoulli sequence. To fully capture complex
edge dependencies, in the full GraphRNN model we further
decompose p(S⇡

i |S
⇡
<i) into a product of conditionals,

p(S⇡
i |S

⇡
<i) =

i�1Y

j=1

p(S⇡
i,j |S

⇡
i,<j , S

⇡
<i), (7)

where S
⇡
i,j denotes a binary scalar that is 1 if node ⇡(vi+1)

is connected to node ⇡(vj) (under ordering ⇡). In this
variant, each distribution in the product is approximated by
an another RNN. Conceptually, we have a hierarchical RNN,
where the first (i.e., the graph-level) RNN generates the
nodes and maintains the state of the graph, while the second
(i.e., the edge-level) RNN generates the edges of a given
node (as illustrated in Figure 1). In our implementation, the
edge-level RNN is a GRU model, where the hidden state
is initialized via the graph-level hidden state hi and where
the output at each step is mapped by a MLP to a scalar
indicating the probability of having an edge. S⇡

i,j is sampled
from this distribution specified by the jth output of the ith
edge-level RNN, and is fed into the j+1th input of the same
RNN. All edge-level RNNs share the same parameters.

Modeled with RNNs[https://arxiv.org/abs/1802.08773]

https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1802.08773


GraphRNN
• Need to model two processes:  


- GraphRNN has two RNNs: node-level RNN and edge-level RNN 


• Relationship between two RNNs: 

- Graph-level RNN maintains the state of the graph and generates new nodes

- Edge-level RNN generates the edges for each newly generated node
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Note that elements in the set of adjacency matrices A⇧ =
{A

⇡
|⇡ 2 ⇧} all correspond to the same underlying graph.

The goal of learning generative models of graphs is to learn
a distribution pmodel(G) over graphs, based on a set of
observed graphs G = {G1, ..., Gs} sampled from data dis-
tribution p(G), where each graph Gi may have a different
number of nodes and edges. When representing G 2 G, we
further assume that we may observe any node ordering ⇡

with equal probability, i.e., p(⇡) = 1
n! , 8⇡ 2 ⇧. Thus, the

generative model needs to be capable of generating graphs
where each graph could have exponentially many represen-
tations, which is distinct from previous generative models
for images, text, and time series.

Finally, note that traditional graph generative models (sur-
veyed in the introduction) usually assume a single input
training graph. Our approach is more general and can be
applied to a single as well as multiple input training graphs.

2.2. A Brief Survey of Possible Approaches

We start by surveying some general alternative approaches
for modeling p(G), in order to highlight the limitations of
existing non-autoregressive approaches and motivate our
proposed autoregressive architecture.

Vector-representation based models. One naı̈ve approach
would be to represent G by flattening A

⇡ into a vector
in Rn2

, which is then used as input to any off-the-shelf
generative model, such as a VAE or GAN. However, this
approach suffers from serious drawbacks: it cannot naturally
generalize to graphs of varying size, and requires training
on all possible node permutations or specifying a canonical
permutation, both of which require O(n!) time in general.

Node-embedding based models. There have been recent
successes in encoding a graph’s structural properties into
node embeddings (Hamilton et al., 2017), and one approach
to graph generation could be to define a generative model
that decodes edge probabilities based on pairwise relation-
ships between learned node embeddings (as in Kipf &
Welling 2016). However, this approach is only well-defined
when given a fixed-set of nodes, limiting its utility for the
general graph generation problem, and approaches based on
this idea are limited to learning from a single input graph
(Kipf & Welling, 2016; Grover et al., 2017).

2.3. GraphRNN: Deep Generative Models for Graphs

The key idea of our approach is to represent graphs under
different node orderings as sequences, and then to build an
autoregressive generative model on these sequences. As we
will show, this approach does not suffer from the drawbacks
common to other general approaches (c.f., Section 2.2), al-
lowing us to model graphs of varying size with complex

Figure 1. GraphRNN at inference time. Green arrows denote the
graph-level RNN that encodes the “graph state” vector hi in its
hidden state, updated by the predicted adjacency vector S⇡

i for
node ⇡(vi). Blue arrows represent the edge-level RNN, whose
hidden state is initialized by the graph-level RNN, that is used to
predict the adjacency vector S⇡

i for node ⇡(vi).

edge dependencies, and we introduce a BFS node order-
ing scheme to drastically reduce the complexity of learn-
ing over all possible node sequences (Section 2.3.4). In
this autoregressive framework, the model complexity is
greatly reduced by weight sharing with recurrent neural
networks (RNNs). Figure 1 illustrates our GraphRNN ap-
proach, where the main idea is that we decompose graph
generation into a process that generates a sequence of nodes
(via a graph-level RNN), and another process that then gen-
erates a sequence of edges for each newly added node (via
an edge-level RNN).

2.3.1. MODELING GRAPHS AS SEQUENCES

We first define a mapping fS from graphs to sequences,
where for a graph G ⇠ p(G) with n nodes under node
ordering ⇡, we have

S
⇡ = fS(G,⇡) = (S⇡

1 , ..., S
⇡
n), (1)

where each element S⇡
i 2 {0, 1}i�1

, i 2 {1, ..., n} is an
adjacency vector representing the edges between node ⇡(vi)
and the previous nodes ⇡(vj), j 2 {1, ..., i� 1} already in
the graph:3

S
⇡
i = (A⇡

1,i, ..., A
⇡
i�1,i)

T
, 8i 2 {2, ..., n}. (2)

For undirected graphs, S⇡ determines a unique graph G,
and we write the mapping as fG(·) where fG(S⇡) = G.

Thus, instead of learning p(G), whose sample space cannot
be easily characterized, we sample the auxiliary ⇡ to get the
observations of S⇡ and learn p(S⇡), which can be modeled
autoregressively due to the sequential nature of S⇡ . At infer-
ence time, we can sample G without explicitly computing
p(G) by sampling S

⇡ , which maps to G via fG.

Given the above definitions, we can write p(G) as the
marginal distribution of the joint distribution p(G,S

⇡):

p(G) =
X

S⇡

p(S⇡) 1[fG(S
⇡) = G], (3)

3We prohibit self-loops and S⇡
1 is defined as an empty vector.
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GraphRNN limitations
! It generates unrealistic artefacts when trained on samples of grids 


! It can be difficult to train and scale due to the need to back 
propagate through many steps of RNN recurrence


! It requires node ordering: struggling with permutation invariance 
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Some comparisons

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Figure 3. A set of sample graphs produced by the models. Each row is conditioned on the same number of nodes.

As eigenvalues are just an increasing sequence, the eigen-
value generator is a simple 4-layer 1D CNN with up-
sampling (Donahue et al., 2018).

Likewise, the discriminator:

e�k = d�(�k, n),

is a strided 4-layer 1D CNN with a linear final read-out
layer. Both networks employ gated activation units z =
tanh(W1X) · �(W2X) as used in WaveNet (Oord et al.,
2016a) and PixelCNN (Oord et al., 2016b).

4.4. Training

To train our model we use the WGAN-LP loss (�LP = 5)
(Petzka et al., 2018), ADAM optimizer (�1 = 0.5, �2 =
0.9) (Kingma & Ba, 2015), and learning rate of 1e� 4 for
both the generator and the discriminator.

During training we utilize a form of teacher forcing, where
initially each model is trained separately for 26k training
steps, using true slightly perturbed spectral features from
the training set for conditioning. We then gradually anneal
the mixing temperature ⌧ , which defines how many real
inputs each model receives, over the next 26k steps from 1.0
to 0.8 using a cosine schedule. This teacher forcing serves
to “teach” the model how to construct graphs with given
spectral features and correct small errors. All of our models
are trained for 150k steps in total. The code is publicly
available2.

The selection of k (the number of eigenvalues and eigen-
vectors) is done as follows. First we train only the graph

2https://github.com/KarolisMart/SPECTRE

generator gA conditioned on true spectra using different val-
ues of k 2 [2, 4, 8, 16, 32] for 26k steps. Then we select the
lowest k which resulted in the generation of good quality
graph samples (low MMD measures).

5. Experimental Evaluation
Our experimental setup largely follows You et al. (2018b)
and Liao et al. (2019) with some important extensions that
are discussed below.

Datasets. We consider five real and synthetic datasets of
varying size and connectivity: Community-small (12-20
nodes) (You et al., 2018b), QM9 (9 nodes) (Ramakrishnan
et al., 2014), Planar graphs (64 nodes), a Stochastic Block
Model (20-40 nodes per community, 2-5 communities), Pro-
teins (100-500 nodes) (Dobson & Doig, 2003). All datasets
are described in Appendix C. We split all datasets into test
(20%) and training (80%) sets. We use 20% of the training
set for validation. We generate the same number of samples
as there are in the test split of each dataset.

MMD measures. Generated graph quality is commonly
evaluated by comparing the distributions of graph statis-
tics between the generated and test graphs (Li et al., 2018;
You et al., 2018b; Liao et al., 2019; Krawczuk et al., 2020).
In particular, we adopt the Maximum Mean Discrepancy
(MMD) measures used by Liao et al. (2019): node degree
(Deg.), clustering coefficient (Clus.), orbit count (Orbit),
eigenvalues of the normalized graph Laplacian (Spec.). We
further introduce an eigenspace-based MMD (Wavelet) that
evaluates the similarity of graph eigenspaces using statistics
from a graph wavelet transform (Hammond et al., 2011).

AR models GAN Models
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Figure 2: Visualization of sample graphs generated by different models.

Grid Protein 3D Point Cloud
|V |max = 361, |E|max = 684 |V |max = 500, |E|max = 1575 |V |max = 5037, |E|max = 10886
|V |avg ⇡ 210, |E|avg ⇡ 392 |V |avg ⇡ 258, |E|avg ⇡ 646 |V |avg ⇡ 1377, |E|avg ⇡ 3074

Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec.

Erdos-Renyi 0.79 2.00 1.08 0.68 5.64e�2 1.00 1.54 9.13e�2 0.31 1.22 1.27 4.26e�2

GraphVAE* 7.07e�2 7.33e�2 0.12 1.44e�2 0.48 7.14e�2 0.74 0.11 - - - -
GraphRNN-S 0.13 3.73e�2 0.18 0.19 4.02e�2 4.79e�2 0.23 0.21 - - - -
GraphRNN 1.12e�2 7.73e�5 1.03e�3 1.18e�2 1.06e�2 0.14 0.88 1.88e�2 - - - -
GRAN 8.23e�4 3.79e�3 1.59e�3 1.62e�2 1.98e�3 4.86e�2 0.13 5.13e�3 1.75e�2 0.51 0.21 7.45e�3

Table 1: Comparison with other graph generative models. For all MMD metrics, the smaller the better.
*: our own implementation, -: not applicable due to memory issue, Deg.: degree distribution, Clus.:
clustering coefficients, Orbit: the number of 4-node orbits, Spec.: spectrum of graph Laplacian.

of the generated grid graphs is particularly noticeable. This implies that the current set of graph
statistics may not give us a complete picture of model performance. We show more visual examples
and results on one more synthetic random lobster graph dataset in the appendix.

4.3 Efficiency vs. Sample Quality

Another important feature of GRAN is its efficiency. In this experiment, we quantify the graph
generation efficiency and show the efficiency-quality trade-off by varying the generation stride. The
main results are reported in Figure 3, where the models are trained with block size 16. We trained our
models on grid graphs and evaluated model quality on the validation set. To measure the run time for
each setting we used a single GTX 1080Ti GPU. We measure the speed improvement by computing
the ratio of GraphRNN average time per graph to that of ours. GraphRNN takes around 9.5 seconds
to generate one grid graph on average. Our best performing model with stride 1 is about 6 times as
fast as GraphRNN, increasing the sampling stride trades-off quality for speed. With a stride of 16,
our model is more than 80x faster than GraphRNN, but the model quality is also noticeably worse.
We leave the full details of quantitative results in the appendix.

8

Some comparisons

[Liao et al., 2019]
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Diffusion models on graphs
! Two main processes: 

- Forward step: add noise 

- Reverse step: denoise 
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Diffusion models on graphs
! Two main processes: 

- Forward step: add noise 

- Reverse step: denoise 
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GT
<latexit sha1_base64="8DsWlPjpfee24a6GpeHlh2caBls=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BD3pMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUq5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5+HjNY=</latexit>

G
<latexit sha1_base64="Kk3JBi36uO9zwIul1OrpO1ZNSxU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BD3qMaB6QrGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMYXU/95hPXRkTqAccx90M6UKIvGEUr3d88YrdYcsvuDGSZeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/0U6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5PGWdmrlCt356XqVRZHHo7gGE7Bgwuowi3UoA4MBvAMr/DmSOfFeXc+5q05J5s5hD9wPn8AKKONvA==</latexit>

Gt
<latexit sha1_base64="cMGCy1kFP+znkVHrvV61zKmM4Pk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArEj0GPegxgnlAsobZySQZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdDP1m09cGxGpBxzH3A/pQIm+YBSt1Lx9TPHMm3SLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTshJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv0rPxUqTpArNl/UTyTBiEx/Jz2hOUM5toQyLeythA2ppgxtQgUbgrf48jJpnJe9Srlyf1GqXmdx5OEIjuEUPLiEKtxBDerAYATP8ApvTuy8OO/Ox7w152Qzh/AHzucPySyPOg==</latexit>

Gt�1

… …

<latexit sha1_base64="fJeoSlO0b+GzEvIRWa+dRvM80/s=">AAACAHicbVC7SgNBFJ31GeMramFhMxiE2IRdkWglARvLKOYBSQizk5tkyOyDmbtiWLbxV2wsFLH1M+z8G2eTLTTxwMDhnHO5c48bSqHRtr+tpeWV1bX13EZ+c2t7Z7ewt9/QQaQ41HkgA9VymQYpfKijQAmtUAHzXAlNd3yd+s0HUFoE/j1OQuh6bOiLgeAMjdQrHHYQHjG+gzQEtORQjRCeJr1C0S7bU9BF4mSkSDLUeoWvTj/gkQc+csm0bjt2iN2YKRRcQpLvRBpCxsdsCG1DfeaB7sbTAxJ6YpQ+HQTKPB/pVP09ETNP64nnmqTHcKTnvVT8z2tHOLjsxsIPIwSfzxYNIkkxoGkbtC8UcJQTQxhXwvyV8hFTjKOpI29KcOZPXiSNs7JTKVduz4vVq6yOHDkix6REHHJBquSG1EidcJKQZ/JK3qwn68V6tz5m0SUrmzkgf2B9/gAKOZYL</latexit>

Reverse (1 step)

<latexit sha1_base64="c5bab31eKksC7JIZ2HmPt3wKuDE=">AAACAHicbVDJSgNBEO2JW4zbqAcPXhqDEC9hRiR6koAgHiOYBZIh9HQqSZOehe4aNQy5+CtePCji1c/w5t/YWQ6a+KDg8V4VVfX8WAqNjvNtZZaWV1bXsuu5jc2t7R17d6+mo0RxqPJIRqrhMw1ShFBFgRIasQIW+BLq/uBq7NfvQWkRhXc4jMELWC8UXcEZGqltH7QQHjG9jtQDUx1acKlGiE9GbTvvFJ0J6CJxZyRPZqi07a9WJ+JJACFyybRuuk6MXsoUCi5hlGslGmLGB6wHTUNDFoD20skDI3pslA7tRspUiHSi/p5IWaD1MPBNZ8Cwr+e9sfif10ywe+GlIowThJBPF3UTSTGi4zRoRyjgKIeGMK6EuZXyPlOMo8ksZ0Jw519eJLXTolsqlm7P8uXLWRxZckiOSIG45JyUyQ2pkCrhZESeySt5s56sF+vd+pi2ZqzZzD75A+vzB/81lgQ=</latexit>

Forward (1 step)

[DiGress, Vignac et al., 2023]



Diffusion models on graphs
! Two main processes: 

- Forward step: add noise 

- Reverse step: denoise 
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<latexit sha1_base64="tRb8rBTIMVIRgpWJxLle3IKgdMw=">AAACGnicbZDLSsNAFIZPvNZ6i7p0M1gEF1ISkepKCiK4bMFeoI1hMp20QycXZiZCCX0ON76KGxeKuBM3vo2TNoK2PTDw8f/nMOf8XsyZVJb1bSwtr6yurRc2iptb2zu75t5+U0aJILRBIh6Jtocl5SykDcUUp+1YUBx4nLa84XXmtx6okCwK79Qopk6A+yHzGcFKS65pdwOsBp6f1sfuL7bH9+oULTButIFcs2SVrUmhebBzKEFeNdf87PYikgQ0VIRjKTu2FSsnxUIxwum42E0kjTEZ4j7taAxxQKWTTk4bo2Ot9JAfCf1ChSbq34kUB1KOAk93ZkvKWS8TF3mdRPmXTsrCOFE0JNOP/IQjFaEsJ9RjghLFRxowEUzvisgAC0yUTrOoQ7BnT56H5lnZrpQr9fNS9SqPowCHcAQnYMMFVOEWatAAAo/wDK/wZjwZL8a78TFtXTLymQP4V8bXD3naocE=</latexit>

Qt
X,Qt

E

<latexit sha1_base64="e1K3z8IrSjgLj3nRkojcgi/1waQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BD3qMmBcka5idzCZDZmeXmV4hhHyCFw+KePWLvPk3TpI9aLSgoajqprsrSKQw6LpfTm5ldW19I79Z2Nre2d0r7h80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj65nfeuTaiFjVcZxwP6IDJULBKFrp/uah3iuW3LI7B/lLvIyUIEOtV/zs9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkxCp9EsbalkIyV39OTGhkzDgKbGdEcWiWvZn4n9dJMbz0J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsv/yXNs7JXKVfuzkvVqyyOPBzBMZyCBxdQhVuoQQMYDOAJXuDVkc6z8+a8L1pzTjZzCL/gfHwD+BSNnA==</latexit>

GT
<latexit sha1_base64="8DsWlPjpfee24a6GpeHlh2caBls=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BD3pMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUq5Ur8sVW+yOPJwAqdwDh5cQRXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5+HjNY=</latexit>

G
<latexit sha1_base64="Kk3JBi36uO9zwIul1OrpO1ZNSxU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BD3qMaB6QrGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMYXU/95hPXRkTqAccx90M6UKIvGEUr3d88YrdYcsvuDGSZeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/0U6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5PGWdmrlCt356XqVRZHHo7gGE7Bgwuowi3UoA4MBvAMr/DmSOfFeXc+5q05J5s5hD9wPn8AKKONvA==</latexit>

Gt
<latexit sha1_base64="cMGCy1kFP+znkVHrvV61zKmM4Pk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArEj0GPegxgnlAsobZySQZMju7zPQKYclHePGgiFe/x5t/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdDP1m09cGxGpBxzH3A/pQIm+YBSt1Lx9TPHMm3SLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTshJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv0rPxUqTpArNl/UTyTBiEx/Jz2hOUM5toQyLeythA2ppgxtQgUbgrf48jJpnJe9Srlyf1GqXmdx5OEIjuEUPLiEKtxBDerAYATP8ApvTuy8OO/Ox7w152Qzh/AHzucPySyPOg==</latexit>

Gt�1

… …

<latexit sha1_base64="fJeoSlO0b+GzEvIRWa+dRvM80/s=">AAACAHicbVC7SgNBFJ31GeMramFhMxiE2IRdkWglARvLKOYBSQizk5tkyOyDmbtiWLbxV2wsFLH1M+z8G2eTLTTxwMDhnHO5c48bSqHRtr+tpeWV1bX13EZ+c2t7Z7ewt9/QQaQ41HkgA9VymQYpfKijQAmtUAHzXAlNd3yd+s0HUFoE/j1OQuh6bOiLgeAMjdQrHHYQHjG+gzQEtORQjRCeJr1C0S7bU9BF4mSkSDLUeoWvTj/gkQc+csm0bjt2iN2YKRRcQpLvRBpCxsdsCG1DfeaB7sbTAxJ6YpQ+HQTKPB/pVP09ETNP64nnmqTHcKTnvVT8z2tHOLjsxsIPIwSfzxYNIkkxoGkbtC8UcJQTQxhXwvyV8hFTjKOpI29KcOZPXiSNs7JTKVduz4vVq6yOHDkix6REHHJBquSG1EidcJKQZ/JK3qwn68V6tz5m0SUrmzkgf2B9/gAKOZYL</latexit>

Reverse (1 step)

<latexit sha1_base64="c5bab31eKksC7JIZ2HmPt3wKuDE=">AAACAHicbVDJSgNBEO2JW4zbqAcPXhqDEC9hRiR6koAgHiOYBZIh9HQqSZOehe4aNQy5+CtePCji1c/w5t/YWQ6a+KDg8V4VVfX8WAqNjvNtZZaWV1bXsuu5jc2t7R17d6+mo0RxqPJIRqrhMw1ShFBFgRIasQIW+BLq/uBq7NfvQWkRhXc4jMELWC8UXcEZGqltH7QQHjG9jtQDUx1acKlGiE9GbTvvFJ0J6CJxZyRPZqi07a9WJ+JJACFyybRuuk6MXsoUCi5hlGslGmLGB6wHTUNDFoD20skDI3pslA7tRspUiHSi/p5IWaD1MPBNZ8Cwr+e9sfif10ywe+GlIowThJBPF3UTSTGi4zRoRyjgKIeGMK6EuZXyPlOMo8ksZ0Jw519eJLXTolsqlm7P8uXLWRxZckiOSIG45JyUyQ2pkCrhZESeySt5s56sF+vd+pi2ZqzZzD75A+vzB/81lgQ=</latexit>

Forward (1 step)

Each node and each edge lie in a discrete state-space:


- Nodes:


- Edges:

        

  (“No edge” is an edge state)


Forward: noise applied independently to each node and edge using         and  

Reverse: use a denoising graph neural network -            

<latexit sha1_base64="jwmYrMq9nAcMq5yg54GqEYvTfmU=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4sgKCURqS6LblxWsA9oYphMJ+3YySTMTIQSsnfjr7hxoYhbf8Cdf+OkzUJbD1w4nHMv997jx4xKZVnfRmlpeWV1rbxe2djc2t4xd/c6MkoEJm0csUj0fCQJo5y0FVWM9GJBUOgz0vXHV7nffSBC0ojfqklM3BANOQ0oRkpLnll1QqRGfpCSzEvpfQYdyqGTWifQdrK7FB/bmWfWrLo1BVwkdkFqoEDLM7+cQYSTkHCFGZKyb1uxclMkFMWMZBUnkSRGeIyGpK8pRyGRbjr9JYOHWhnAIBK6uIJT9fdEikIpJ6GvO/PL5byXi/95/UQFF25KeZwowvFsUZAwqCKYBwMHVBCs2EQThAXVt0I8QgJhpeOr6BDs+ZcXSee0bjfqjZuzWvOyiKMMDkAVHAEbnIMmuAYt0AYYPIJn8ArejCfjxXg3PmatJaOY2Qd/YHz+ANMSmkQ=</latexit>

eij 2 {0, 1}c+1
<latexit sha1_base64="cDghbc+hXrPEPMfPMsd9xrlJGyk=">AAACGnicbZDLSsNAFIYn9VbrLerSzWARKkpJRKrLogguK9gLNLFMppN26GQSZiZCCXkON76KGxeKuBM3vo2TNoi2/jDw8Z9zOHN+L2JUKsv6MgoLi0vLK8XV0tr6xuaWub3TkmEsMGnikIWi4yFJGOWkqahipBMJggKPkbY3uszq7XsiJA35rRpHxA3QgFOfYqS01TNtJ0Bq6PnJVQodyqGTWMfQdtK7RLOiAZHwByr4yD5Me2bZqloTwXmwcyiDXI2e+eH0QxwHhCvMkJRd24qUmyChKGYkLTmxJBHCIzQgXY0c6V1uMjkthQfa6UM/FPpxBSfu74kEBVKOA093ZofI2Vpm/lfrxso/dxPKo1gRjqeL/JhBFcIsJ9ingmDFxhoQFlT/FeIhEggrnWZJh2DPnjwPrZOqXavWbk7L9Ys8jiLYA/ugAmxwBurgGjRAE2DwAJ7AC3g1Ho1n4814n7YWjHxmF/yR8fkNawefOQ==</latexit>

E 2 {0, 1}n⇥n⇥(c+1)

<latexit sha1_base64="BsdYwmnAEWzDomPTD/H2XfDVFX0=">AAACBHicbVBNS8NAEJ34WetX1GMvi0XwICURqR6LXjxWsB/QxLLZbtqlm03Y3Ygl9ODFv+LFgyJe/RHe/Ddu2h609cHA470ZZuYFCWdKO863tbS8srq2Xtgobm5t7+zae/tNFaeS0AaJeSzbAVaUM0EbmmlO24mkOAo4bQXDq9xv3VOpWCxu9SihfoT7goWMYG2krl3yIqwHQZg9jLsMeUwgL3NOkOuN74KuXXYqzgRokbgzUoYZ6l37y+vFJI2o0IRjpTquk2g/w1Izwum46KWKJpgMcZ92DBU4osrPJk+M0ZFReiiMpSmh0UT9PZHhSKlRFJjO/GQ17+Xif14n1eGFnzGRpJoKMl0UphzpGOWJoB6TlGg+MgQTycytiAywxESb3IomBHf+5UXSPK241Ur15qxcu5zFUYASHMIxuHAONbiGOjSAwCM8wyu8WU/Wi/VufUxbl6zZzAH8gfX5A3wxl1o=</latexit>

xi 2 {0, 1}b
<latexit sha1_base64="zBVcrJXBdxo0oaG4qG3BKijAFdY=">AAACDXicbVBNS8NAEN3Ur1q/qh69LFbBg5REpHosevFYwX5AE8tmu2mXbjZhdyKUkD/gxb/ixYMiXr1789+4bXPQ1gcDj/dmmJnnx4JrsO1vq7C0vLK6VlwvbWxube+Ud/daOkoUZU0aiUh1fKKZ4JI1gYNgnVgxEvqCtf3R9cRvPzCleSTvYBwzLyQDyQNOCRipVz5yQwJDP0g7GXa5xG5qn2LHze5Tw4GHTGM/65UrdtWeAi8SJycVlKPRK3+5/YgmIZNABdG669gxeClRwKlgWclNNIsJHZEB6xoqidnjpdNvMnxslD4OImVKAp6qvydSEmo9Dn3TObldz3sT8T+vm0Bw6aVcxgkwSWeLgkRgiPAkGtznilEQY0MIVdzciumQKELBBFgyITjzLy+S1lnVqVVrt+eV+lUeRxEdoEN0ghx0geroBjVQE1H0iJ7RK3qznqwX6936mLUWrHxmH/2B9fkDEFma8A==</latexit>

X 2 {0, 1}n⇥b

<latexit sha1_base64="HoupM0iGYvkpfGvLi/nGh0+194U=">AAAB9XicbVDLSsNAFL3xWeur6tJNsAiuSiJSXRbduGzBPqBNy2Q6aYdOJmHmRimh/+HGhSJu/Rd3/o2TNgttPTBwOOde7pnjx4JrdJxva219Y3Nru7BT3N3bPzgsHR23dJQoypo0EpHq+EQzwSVrIkfBOrFiJPQFa/uTu8xvPzKleSQfcBozLyQjyQNOCRqp3wsJjv0gbcz6OOgMSmWn4sxhrxI3J2XIUR+UvnrDiCYhk0gF0brrOjF6KVHIqWCzYi/RLCZ0Qkasa6gkIdNeOk89s8+NMrSDSJkn0Z6rvzdSEmo9DX0zmaXUy14m/ud1EwxuvJTLOEEm6eJQkAgbIzurwB5yxSiKqSGEKm6y2nRMFKFoiiqaEtzlL6+S1mXFrVaqjaty7TavowCncAYX4MI11OAe6tAECgqe4RXerCfrxXq3Phaja1a+cwJ/YH3+AL/6krE=</latexit>

Qt
X

<latexit sha1_base64="UBzPO/saCTKsVOGcbFtHv6m9MzU=">AAAB9XicbVDJSgNBFHwTtxi3qEcvjUHwFGZEosegCB4TMAtko6fTkzTpWeh+o4Qh/+HFgyJe/Rdv/o09yRw0saChqHqPV11uJIVG2/62cmvrG5tb+e3Czu7e/kHx8Kipw1gx3mChDFXbpZpLEfAGCpS8HSlOfVfylju5Tf3WI1dahMEDTiPe8+koEJ5gFI3U7/oUx66X1Gd9HNwNiiW7bM9BVomTkRJkqA2KX91hyGKfB8gk1brj2BH2EqpQMMlnhW6seUTZhI54x9CA+lz3knnqGTkzypB4oTIvQDJXf28k1Nd66rtmMk2pl71U/M/rxOhd9xIRRDHygC0OebEkGJK0AjIUijOUU0MoU8JkJWxMFWVoiiqYEpzlL6+S5kXZqZQr9ctS9SarIw8ncArn4MAVVOEeatAABgqe4RXerCfrxXq3PhajOSvbOYY/sD5/AKMukp4=</latexit>

Qt
E

<latexit sha1_base64="dqOkLt8B5brT/kuwsXT6KALeDPM=">AAAB+nicbVDLSgNBEJyNrxhfGz16WQyCp7ArEj0GPegpRDAPyC5hdtJJhsw+mOlVw5pP8eJBEa9+iTf/xkmyB00saCiquunu8mPBFdr2t5FbWV1b38hvFra2d3b3zOJ+U0WJZNBgkYhk26cKBA+hgRwFtGMJNPAFtPzR1dRv3YNUPArvcByDF9BByPucUdRS1yy6CI+YXtdqk66LQ0DaNUt22Z7BWiZORkokQ71rfrm9iCUBhMgEVarj2DF6KZXImYBJwU0UxJSN6AA6moY0AOWls9Mn1rFWelY/krpCtGbq74mUBkqNA193BhSHatGbiv95nQT7F17KwzhBCNl8UT8RFkbWNAerxyUwFGNNKJNc32qxIZWUoU6roENwFl9eJs3TslMpV27PStXLLI48OSRH5IQ45JxUyQ2pkwZh5IE8k1fyZjwZL8a78TFvzRnZzAH5A+PzB4ETlC0=</latexit>

GNN✓
[DiGress, Vignac et al., 2023]



Discrete diffusion on graphs - DiGress
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Replace continuous diffusion framework by 
their discrete state-spaces counterpart, e.g.:

Discrete noise model: 


Denoise the process with an 
equivariant architecture


Graphs are sparse


Graph Transformer with expressive features 
as input: cyclic and spectral features

 

Markov transition matrices


Use sparsity-inducing transition matrices: 
marginal distribution of nodes/edges

[DiGress, Vignac et al., 2023]

! Graph generation = sequence of a node and edge classification 
tasks Forward step 

Reverse step 

Graphs are inherently discrete 



Illustrative example: Generation of new samples
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Synthetic Graphs 
(Planar)


Real World Applications: 
Molecular Generation




Illustrative example: Generation of new samples
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Synthetic Graphs 
(Planar)


Real World Applications: 
Molecular Generation
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Today’s lecture
! Introduction into deep probabilistic graph generative models


! Main architectures


! Applications


! Open discussion/ Feedback on the class
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Molecular Generation
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• Enables exploration of large, unstructured chemical spaces

• Accelerate drug discovery and material design: generate 

chemically valid molecular graphs beyond known molecules

[Qin et al., DeFoG: Discrete Flow Matching for Graph Generation, ICML 2025]



Molecular Generation
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• Enables exploration of large, unstructured chemical spaces

• Accelerate drug discovery and material design: generate 

chemically valid molecular graphs beyond known molecules

[Qin et al., DeFoG: Discrete Flow Matching for Graph Generation, ICML 2025]



Network Simulation

32

Network Machine Learning - EE452

Dr Dorina Thanou 


Prof. Pascal Frossard

[You et al., GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models, ICML 2018]

• Create synthetic graphs that mimic real-world network 
statistics (e.g., degree distribution, clustering)


• Useful for benchmarking algorithms and studying social or 
information diffusion without privacy concerns



Neural Architecture Search
! Represent neural networks as directed acyclic graphs to 

explore architectural design spaces

• Graph generation enables automated search for performant 

models under multiple constraints (e.g. latency, accuracy) 
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[Asthana et al., Multi-conditioned Graph Diffusion for Neural Architecture Search, TMLR 2024]



Combinatorial Optimisation
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[Sun et al., DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization, NeurIPS 2023]

• Generate high-quality graph-structured solutions for NP-hard 
problems like Traveling Salesman Problem (TSP) and Maximal 
Independent Set (MIS)


• Provides scalable, learned solvers that generalize across problem 
instances

# Points

50

100

50
0

Timestep
T=50 T=0



Take home messages
! Deep generative models can model graphs with complicated 

topology and constrained structural properties


! Autoregressive models progressively grow the graph by inserting 
nodes and edges (e.g., GraphRNN)

- High flexibility in sampling 

- Need for node ordering


! One shot generation predicts the entire graph in a single step (e.g., 
VAEs, GANs, Diffusion)

- Permutation invariance properties 


! Ample room for further development!
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Take home messages
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Thank you!


