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Reminder: Graph generative models

 Random graph models

. Capture simple graph distribution

. Limited capacity to model complex
dependencies

. Only capable of modelling a few statistical
properties of graphs

* Deep generative models

. Learn generative models
directly from an observed set

o o sron | G

. Can model highly complex
structures such as proteins
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What will you learn?

e Given the observation & = {G;};, with G; ~ P,,,, , we aim at

learning the distribution of the observed set of graphs Py(G) such
that sampled graphs looks like the ones in the dataset

P ={G,G,, ...,G,}
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Main challenges for generating graphs

Main families of graph generative models
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Today’s lecture

* Introduction into deep probabilistic graph generative models
 Main architectures
* Applications

 Open discussion/ Feedback on the class
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What’s New with Graphs?

* Non-Unique Representations: A graph with 7 nodes can be
represented by up to n! equivalent adjacency matrices

Can we use generative models for Euclidean data?
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Non-Unique Representation

* Non-Unique Representations: A graph with z nodes can be
represented by up to n! equivalent adjacency matrices

X

N /H "
{j} (] G—->A—vecA) — [Off—the-shelf generative model}

e EXxisting methods cannot naturally generalize to graphs of varying
size
training on all possible node permutations or specifying a canonical permutation
is required, both of which require ©(n!) time
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Varying Size Input

* Rather than vectoring the adjacency matrix:

Learn graph embeddings as compact representations
Use these embeddings as input of classical generative models

x € R4

/ N\ M — — {Oﬁ-the-shelfgenerative model}
— = \

* Key limitations:
Still constrained to a single input graphs and a fixed number of nodes
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Topological Information

G=(7,%,X,E)

<
W : generative
—~ = M model

e X € RV*P and E € RM™MF are the node features matrix and the edge
attributes tensor, respectively

Information relies on both data features and topology

Complex Dependencies: Edges and nodes cannot be treated independently

Large Output Spaces: To generate a graph with n nodes the generative model may have to
output O(n?) values to specify its structure

Discrete Objects by Nature: Not differentiable
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Topological Information

G=(7,%8X,E) *  Should we Learn joint distribution of G?

X
¢ _ __ | generative *  Should we rather Learn the joint
~ N M model distribution of X and € independently?

o  Should we treat them as categorical or
continuous data?

e X € RV*P and E € RM™MF are the node features matrix and the edge
attributes tensor, respectively

Information relies on both data features and topology

Complex Dependencies: Edges and nodes cannot be treated independently

Large Output Spaces: To generate a graph with n nodes the generative model may have to
output O(n?) values to specify its structure

Discrete Objects by Nature: Not differentiable
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Evaluating Similarity

« Exposing the model to n! permutations is infeasible

* Pre-defining an order is computationally expensive
Only practical in constrained domains (e.g., molecules via SMILES)

generative
—_— —
[ model 1

Loss function needs to be permutation equivariant!
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Graph Generative Models

9 - {Gl’ G2, ,Gn}

@ d(pdatwpe) D
pdc;ta —@ ‘

» Given the observation ¥ = {G,},, with G; ~ p,,., , we aim at

learning the distribution of the observed set of graphs p,(G) such that sampled graphs
looks like the ones in the dataset [unconditional generation]

learning the distribution of the observed set of graphs P,(G | y) such that sampled graphs
looks like the ones in the dataset and conditioned to some prior information ¥ [conditional

generation]
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A unifying view of graph generation

Generation strategies

' 9om 5 %0 Gon
Sampling strategies - al d

Sequential generation

Rand :
Deep generative models o 3 _,_f}oé»oa
[VAE] [FIOW] [Diffusion] ... Controllable ! One-hot generation J
g 4 v,
Q . Q
Encoder 0\ —>  Sampler —_— Decoder | )Q pOH
fe(z | G) z ~p(z) fe(G | 2)
[Zhou22]
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How to Decode/Generate Graphs?

Graph Generator

N

One Shot Generation: Sequential Generation
builds a probabilistic graph builds the nodes and edges
model based on the matrix in a sequential way, one
representation that after another

generates all nodes and
edges in one shot
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One shot generation

Graph Generator

One Shot Generation

N

Edge based Matrlx based (unit matrix initialization)

A0 > Al P AT EECE EECE
It requires a generative Z~N(1,0) ‘ I I -@g
model that predicts H-: =—m—1
edges independently T o T amun
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Sequential generation

(a) Node-sequence-based

3
2—®
v, — a2 {er) — (w3 {ers e23}) —  (vs,{e3s,€24))

(b) Edge-sequence-based @
o
g — _— D QO O G
@ @ 2
(€12, {v1, v2}) — (€13, {v1, v3}) — (€14, {vi,1s}) — (€23, {v2,v3})

(c) Motif-sequence-based

@@

o p ] o | e
€) — (C2) — (C3) —= (C4)

(d) Rule-sequence-based

© O © © @
o = O Om=m© OmO® ©
OO © © ©—C

add branched atom | — | construct a ring —» | make the — | add single bonds

with branched atom Atom as ‘C’

Graph Generator

Sequential Generation

Edge / node Motif Rule
seguence seguence sequence

https://arxiv.org/abs/2007.06686
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Today’s lecture

* Introduction into deep probabilistic graph generative models
 Main architectures
* Applications

 Open discussion/ Feedback on the class
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Graph VAE

e Circumvent non-differentiability problem through loss on
constructed probabilistic graph

e Variational Autoencoder:
- Encoder g4(z| G): embeds graph G = (A, E, F) into continuous latent
space z

- Decoder: reconstructs from z a probabilistic graph G of predefined max

Size g P(G](;') by graph matching
© ml . align the generated graph to
© o L2 KLY “ \ e the ground truth (non-unique
. 2(zIC) \ representations challenge)
@ ~ | Z 2 l“
(G|z)
F pa _ argmax
o) = ] F o)

GNN + gated pooling [Simonovsky’18]
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Limitations of graph VAEs

e Desirable: Different node orderings of the same graph should be
mapped to the same latent space

* This implies solving graph isomorphism (NP-hard)

- VAEs are only feasible in constrained domains (e.g. molecules)
- Typically small graphs with ~40 nodes

 The max size of the graphs must be predefined

e Graph matching is required
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GANs: MolGAN

e An implicit, likelihood-free generative model
e Directly generates graphs via learned node and edge likelihoods

Molecular graph L
Generator - ~N Discriminator

O
~E | -
z ~D(z) S
P Wh@

0/1
 Reward discriminator evaluates graph properties

 Combined with reinforcement learning (loss function)
Encourages generation of molecules with desirable properties

 Permutation equivariance is achieved using graph convolution in the

discriminator [Cao'18]
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GANs: MolGAN in details

Adjacency tensor A Sampled A Graph

\ / O \ Discriminator

Generator

N J \_ /
Sampled X Molecule
Reward network
0O
! [ i S
T T
[MolGAN, De Cao et al. 2018]
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GANs: MolGAN in details

Adjacency tensor A Sampled A Graph
\ / O \ Discriminator
O/Q\ o
Generator 1
N J \O\O' /
AN .
Sampled X Molecule
z ~p(z)

T

Reward network
@)
|
GCN
/ f i [ i S
T

Owe shot generation

* faster and easter to
optimizc thaw sequential
generation

* Limited to graphs of a pre-
chosen maximume stze

[MolGAN, De Cao et al. 2018]
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GANs: MolGAN in details

Adjacency tensor A Sampled A Graph
\ f O \ Discriminator
O/Q\ o
Generator 1
- : O\O
~ N N /A /
Annotation matrix X Sampled X Molecule
z ~p(2)

Reward network
@)
|
NH eon
f ! S \
T

qraph convolution
* faster and easter to
optimize than sequential La g ers ,GO nvolve the
generation node signals

* Limited to graphs of a pre- ULSE«V\IQ the @Vﬂ’Ph
chosen maximum size Qa UU a GCV\aGa tensor

owe shot generation

[MolGAN, De Cao et al. 2018]
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Practical considerations in graph GANs

v No graph matching is required
v Higher validity and novelty than VAEs

Predefined max graph size is needed
Few graph GAN models exist

Mainly due to the complexity of designing effective generators

Expressivity challenges:
One-shot generators struggle to capture global graph properties
Issues more pronounced in large graphs
Results in training instability and non-convergence
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Autoregressive models

e Sequential generation: Graph generation process decomposed
iInto a sequence of node and edge formations, conditioned on the

graph structure previously generated (AR)
 Example: GraphRNN accommodates variable-sized graphs

» Instead of learning (and sampling from) p, .. (G), it learns p(S”),

modelled auto-regressively

Generation process S™

Graph G f OLIOL = (O—0@ = O—0O
R OF S 6 QU G o=
(5)

ST =(SF, S, ST ST, S5)

QO—¥
n—+1
=Y PS5 Ufe(ST) =G p(87) = [[#(STIST. -7
1=1
[https://arxiv.org/abs/1802.08773] Modeled with RNNs
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GraphRNN

* Need to model two processes:
GraphRNN has two RNNs: node-level RNN and edge-level RNN
* Relationship between two RNNs:

Graph-level RNN maintains the state of the graph and generates new nodes
Edge-level RNN generates the edges for each newly generated node

hq ho hs hy hs he
O—B) O—B)
o ¢ i i
2 l @ O—®
SOS— 1| — |: 1 E 0 |0
SS’ 0 |: 1| —- —1 0
Sg 1 — 1 Sample + Edge-level Update
SZLT — 1 Node-level Update
Sﬂ'
5
[GraphRNN, You et al. 2018]
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GraphRNN limitations

* |t generates unrealistic artefacts when trained on samples of grids

e |t can be difficult to train and scale due to the need to back
propagate through many steps of RNN recurrence

* |t requires node ordering: struggling with permutation invariance
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Some comparisons

Planar

SBM

Proteins

True Graphs

AR models GAN Models
GraphRNN MolGAN* GG-GAN (RS)* GG-GAN*
o
@\
/}\/\/\\\
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[Martinkus et al., 2022]
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Some comparisons

Protein Gri Gri

Protein

VAE

AR models

GraphVAE

GraphRNN

AL
i
A N

GRAN (Ours)

NS

3 &
R
\

AN\thhee
W

[Liao et al., 2019]
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Diffusion models on graphs

 Two main processes:
- Forward step: add noise
- Reverse step: denoise

[DiGress, Vignac et al., 2023]
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Diffusion models on graphs

 Two main processes:
- Forward step: add noise

- Reverse step: denoise
GT
O
o O O
@ (@)

Forward (1 step)

G? @ Gt
e e
e ©©° e CK.
o—@
~_ 7

Reverse (1 step)

-,

[DiGress, Vignac et al., 2023]

cPL

Network Machine Learning - EE452
Dr Dorina Thanou
Prof. Pascal Frossard

27



Diffusion models on graphs

 Two main processes:
- Forward step: add noise

- Reverse step: denoise Forward (1 step)
Gt G* @ Gt1 G
O O @
o © © cos e 0 ° ® CK. vee
o © o—®o
~_

Reverse (1 step)
Each node and each edge lie in a discrete state-space:
- Nodes: x; € {0,1}" — X {01}
- Edges: ¢;; € {071}C+1 - E c {071}n><n><(c—|—1)

(“No edge” is an edge state)

Forward: noise applied independently to each node and edge using Qfx and QtE

Reverse: use a denoising graph neural network - GNNy _ _
[DiGress, Vignac et al., 2023]
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Discrete diffusion on graphs - DiGress

e Graph generation = sequence of a node and edge classification

tasks

Lo L1 : Vo

Graphs are inherently discrete

Denoise the process with an
equivariant architecture

Graphs are sparse

[DiGress, Vignac et al., 2023]

tForward step

G

G\tht G

Cross-entropy

f}@* oo

¢0(Gt) p()(G’Gt)

Reverse step

——  Replace continuous diffusion framework by
their discrete state-spaces counterpart, e.g.:

>

Discrete noise model:
q(Gt|Gt—1) _ (Xt_1@ , Et—l@)

Markov transition matrices

> Graph Transformer with expressive features
as input: cyclic and spectral features

——) JS€ Sparsity-inducing transition matrices:
marginal distribution of nodes/edges

QfX =o'l + /Bt ]-ame

L=ao'T+ B 1,;m/;

cPL
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lllustrative example: Generation of new samples

Synthetic Graphs Real World Applications:
(Planar) Molecular Generation

7. S
ST N

2 NI DS
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Today’s lecture

* Introduction into deep probabilistic graph generative models
 Main architectures
 Applications

 Open discussion/ Feedback on the class
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Molecular Generation

* Enables exploration of large, unstructured chemical spaces
 Accelerate drug discovery and material design: generate
chemically valid molecular graphs beyond known molecules

NH H

P ] /H O CH ~
T /f /H&\ “\ N X

t= 0.00 t= 0.00 t= 0.00 t= 0.00 t= 0.00

[Qin et al., DeFoG: Discrete Flow Matching for Graph Generation, ICML 2025]
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Molecular Generation

* Enables exploration of large, unstructured chemical spaces
 Accelerate drug discovery and material design: generate
chemically valid molecular graphs beyond known molecules

NH H

P ] /H O CH ~
T /f /H&\ “\ N X

t= 0.00 t= 0.00 t= 0.00 t= 0.00 t= 0.00

[Qin et al., DeFoG: Discrete Flow Matching for Graph Generation, ICML 2025]
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Network Simulation

e Create synthetic graphs that mimic real-world network
statistics (e.g., degree distribution, clustering)

e Useful for benchmarking algorithms and studying social or
information diffusion without privacy concerns

[You et al., GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models, ICML 2018]
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Neural Architecture Search

* Represent neural networks as directed acyclic graphs to

explore architectural design spaces
* Graph generation enables automated search for performant

models under multiple constraints (e.g. latency, accuracy)

sep_conv_5x5

sep_conv_3x3
max_pool_3x3 0
skip_connect 0
sep_conv_5x5
c_{k-2} (P; onv_5x5 |3 ¢_{k-2} [—SKip_connect m
dil_conv_5x
_conv_ 3L

c_{k}

/ c_tk}
1 /"7

sep_conv_5x5

sep_conv_5x5

skip_connect

¥

c_{k-1}

skip_connect

o ~ 7 ‘;
1 c (k1) sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

[Asthana et al., Multi-conditioned Graph Diffusion for Neural Architecture Search, TMLR 2024]

i = Network Machine Learning - EE452
== P = I Dr Dorina Thanou
B B Prof. Pascal Frossard

33



Combinatorial Optimisation

* Generate high-quality graph-structured solutions for NP-hard

problems like Traveling Salesman Problem (TSP) and Maximal
Independent Set (MIS)

* Provides scalable, learned solvers that generalize across problem
Instances Timestep

> T:O

# Points 100
A g
t R T
A
50 fu, e 2
(_«“"J!{{Ev"_—i :’;;:..
.;.h.',’: Tl ) o
e ot e ke
O PN P el b
NN T
ool S‘_‘:\":' b
im0
P P &

[Sun et al., DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization, NeurlPS 2023]
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Take home messages

 Deep generative models can model graphs with complicated
topology and constrained structural properties

e Autoregressive models progressively grow the graph by inserting
nodes and edges (e.g., GraphRNN)

- High flexibility in sampling
- Need for node ordering

* One shot generation predicts the entire graph in a single step (e.g.,
VAEs, GANSs, Diffusion)

- Permutation invariance properties

 Ample room for further development!
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Take home messages

Model Type Advantages

Limitations

Auto-Regressive - Sequential generation fits RL frameworks

- Supports reward-based control

VAE-Based - Flexible latent space
- Control via loss or property mapping

- Enables latent space optimization

GAN-Based - Enables conditional generation via property
discriminators

- Supports structure-aware (e.g., motif) modeling

Diffusion-Based - High-quality graph and feature generation

- Captures topology and node features jointly

- Requires node ordering
- Costly for large graphs

- Weak global structure

« Blurry outputs
- Latent-property alignment can be unreliable

- Struggles with complex graphs

- Training instability
- Generator design complexity

- Sensitive to node permutations

- High computational cost
- Controllability still evolving

- Requires complex training (score-based)
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Thank you!
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